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I. INTRODUCTION 

. 

In  this report, we present the progress made i n  NASA Contract NAS1-17719, 

entitled "Evaluation of Fault Tolerant Concepts," since the supplemental Final 

Report of March 1986 [l]. The main result of this phase of the project is the 

partitioning of the FINDS algorithm into two parts: one processing the sen- 

sors related to  the translational dynamics and the other processing the sen- 

sors related to the rotational kinematics, thus allowing a parallel prwessing 

solution on the dual-processor configuration of the target f l i g h t  computer. 

These partitioned sub-algorithms have been ported onto the two sides of the 

target f l i g h t  cmpiter, using a DMA local data comunication l$nk to  transfer 

the relevant program variables between the two sides. The functional perfor- 

mance and execution speed of this parallel implementation has been evaluated 

on the f l i g h t  computer using five minutes of f l i g h t  recorded sensor data [ 2 ] ,  

[ 6 ]  from the NASA ATOPS B-737 aircraft i n  a Microwave Landing System (MLS) en- 

vironment. 

A s  specified i n  [l], the target f l i g h t  computer chosen for this  phase ol? 

the project has a dual-processor configuration with each side having 128 Kb of 

memory. Each processor has approximately a 255,000 Whetstones floating po,int 

performnce i n  32 bit  single precision. I n  the previous phase, the FINqS 

algorithm software s ize  had been reduced to 116 Kb allowing the entire corq- 

posite algorithm (combined translational and rotat ional)  to  be ported ontq 

only one side of the target flight computer. The executable image of t h i g  

composite version ran about 1 W . 5  times slower than real time a t  gain updatg 

frequencies of 20/4 Hz, using only a single side CPU. The decision to retain 

this same target f l i g h t  computer i n  the current phase of the project t h u s  

necessitated the s p l i t - u p  of the  algorithm to  allow a real-time parallel 

processing solution. 
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The major modifications made to the composite FINDS algorithm in the 

current phase are as follows: 

(a) No-Fail Filter (NFF) Auto-Initialization 

In all of the test runs reported in [l], the no-fail filter (NFF) 

which is an extended Kalman filter ( E K F ) ,  had been assigned initial sfate 

conditions (viz. aircraft position, velocity, attitudes and horizontal winds) 

based on preliminary hand calculations performed with the flight data. Thus, 

an automatic filter initialization routine was developed by using the f i r s t  

iteration of the flight data to calculate the NFF initial condition state 

estimates. 

(b) Isolation Strategy Changes 

As discussed in Chapter 3 in [l], we had replaced the FINDS multiplq 

hypothesis test performing simultaneous detection and isolation with a hierar- 

chical detection and isolation test performing isolation only in the event of 

a failure detection. In [l], only the failure detection strategy had &en 

reported. Here, we present the corresponding sensor failure isolation algo- 

rithm compatible with the new detection strategy. 

(c) Partitioning of the FINDS Algorithm 

As mentioned earlier, the FINDS algorithm was partitipned in to  two 

sub-algorithms to fully utilize the dual configured target flight computer in 

a parallel execution mode. This split-up was possible without any hpact on 

the NFF estimation performance since the translational dynamics filter had 

already been decoupled from the rotational kinematics in the previoys phase by 

using a constant state transition matrix. In the partitioned PINOS algorithm, 

there are two no-fail filters: one for the rotational kinematics and the 

other for the translational dynamics. 



. 

The rotational kinematics f i l t e r  uses the IMU at t i tude and rate gyr9 

sensors i n  a 3-state, 3-bias configuration. The FINDS software for the rota- 

tional kinematics has an executable image of 74 Kb and runs a t  a speed of 1.35 

times real time on the target f l i g h t  computer at  the nominal 20 Hz gain update 

frequency . 
The translational dynamics fi l ter  uses the MLS and I A S  sensors along with 

the linear accelerometers, resulting i n  a &state and 3-bias f i l t e r  configura- 

tion. The FINDS software for the translational dynamics has an executable 

size of 87 Kb and executes a t  approximately 3.55 times real time on the target 

f l i g h t  computer at the nominal 20 Hz frequency. 

The aircraft state and sensor bias estimation performance of both subsets 

has been tested and i s  identical to the baseline performance of the composite 

F I N D S  algorithm [ l ] .  However, t h e  FDI performance of both subsets improves 

marginally as the failure detection thresholds are now dependent on the NFF 

residuals involving only dynamically correlated sensors on each side. This 

results i n  a slightly lower failure detection time for some of the t e s t  cases 

reported i n  [1]. 

(d )  Multi-Rate Implementation 

Based on a study of the low gain update frequency performance of the 

FINDS algorithm, we have investigated the use of different update frequencies 

for  the bias-free and bias f i l ter  computations i n  the NFF. Further analysis 

also indicated that the gains can be updated a t  lower frequencies than t h e  

covariances w i t h  very l i t t l e  degradation i n  estimation performance from n-t 

inal results. Based on this analysis, we have made t h e  necessary modifica- 

t ions allowing a multi-rate implementation of the bias-free and bias f i l ters .  

In  this  multi-rate implementation of the FINDS algorithm, bias-free gain, 

bias-f ree  covariance, bias f i l t e r  gain, and bias f i l t e r  covariance matrices 
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are updated at different frequencies. This allows for various combinations of 

bias-f ree/bias filter and gain/covariance update frequencies. A few of the 

combinations which yield an execution (CPU usage) time lower than the 

simulated flight time, with acceptable estimation and FDI performance, are 

presented here. 

Chapter 2 presents the modifications (a) and (b) above along with thq 

isolation performance results for the FINDS algorithm using the hierarchical 

detection and isolation test. In Chapter 3, we discuss in detail the changes 

(c) and (d)  above and review the impact of these modifications on the estima- 

tion and FDI performance. Chapter 4 concludes the report with our finaL 

remarks and recomnendations for algorithmic modifications and perforwncq 

evaluations. 

. 



. 

11. NFF INITIALIZATION AND FINDS FAILURE ISOLATION PERFORMANCE 

I n  t h i s  chapter,  w e  discuss the var ious changes made i n  t h e  FINDS algo- 

rithm after t h e  new fai lure  de tec t ion  s t r a t egy  had been implemented [l]. In 

p a r t i c u l a r ,  t h e  NFF was modified by i n c o r p o r a t i n g  a n  a u t o - i n i t i a l i z a t i o r )  

r o u t i n e  which sets up the  i n i t i a l  s t a t e  estimates based on the f irst  iteration 

of t h e  f l i g h t  data -- t h i s  r o u t i n e  i s  discussed i n  t h e  f i r s t  sec t ion .  The 

next s ec t ion  deals with t h e  modifications i n  t h e  failure i s o l a t i o n  s t r a t e g y  to 

make i t  compatible w i t h  t h e  new hierarchical de tec t ion  and isolation tesq. 

The modified i s o l a t i o n  strategy now takes i n t o  accoun t  t h e  d i f f e r e n t  moving 

w i n d o w  lengths  used by the  de tec t ion  algorithm. 

2.1 NPF Auto- In i t ia l iza t ion  rout ine  

I n  order t o  a v o i d  large i n i t i a l  error t r a n s i e n t s ,  the Extended Kalman 

F i l t e r  (EKF) used as the no- fa i l  s t a t e  estimator i n  the  FINDS algorithm has to 

be i n i t i a l i z e d  as close to  the  t r u e  states as poss ib le .  In [l], [2],  and (61 

a l l  t h e  t es t  r u n s  were execu ted  by i n i t i a l i z i n g  t h e  f i l t e r  s ta tes  u s i n g  

p r e l i m i n a r y  hand c a l c u l a t i o n s  w i t h  t h e  f l i g h t  data. For f l i g h t  t e s t i n g  the 

FINDS algorithm, w e  have developed and tested a f i l t e r  i n i t i a l i z a t i o n  rout ine ,  

T h i s  r o u t i n e  reads t h e  f i r s t  i t e r a t i o n  of the  f l i g h t  data and uses the  MLS 

azimuth, e leva t ion ,  and range, IAS,  IMU roll,  p i t c h  and yaw measurements t9  

calculate  t h e  NFF states which c o n s i s t  of the  aircraft pos i t i on ,  ve loc i ty ,  

at t i tude and hor izonta l  w i n d s  i n  the runway frame. 

F i g u r e  2 . 1  d e p i c t s  t h e  M L S  geometry and measurements with re ference  t o  

Y ~ ,  and zaz be the  x, y and the  MLS and runway coordinate  systems. Let x 

z c o o r d i n a t e s  of t h e  azimuthhange antenna wi th  respect to  the runway frame, 

S i m i l a r l y ,  l e t  xel, yel, and zel be t h e  x, y and  z c o o r d i n a t e s  of t h g  

e l e v a t i o n  a n t e n n a  i n  t h e  runway c o o r d i n a t e  system. Then, xoe = x - x 
az el' 
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Figure 2.1: Runway Coordinate System and MLS Geometry 



yOe= yaz + yel and zoe = zaz - zel represent t he  coordinates of t h e  e l e v a t i o n  

a n t e n n a  w i t h  r e s p e c t  t o  t h e  azimuth o r i g i n ;  i .e. ,  i n  t h e  MLS coordinate 

system. 

I f  %, yM, zM denote the  aircraft p o s i t i o n  i n  t h e  MLS frame, then the MLS 

measurements are given by: 

a a a i / a  
RANGE = (xM + YM + zM) 

-1 ( \-z oe ) 

((x, - Xoe) + (YM - yoe) + (ZM - z ELEV = s i n  a a )a)l/a 

oe 

Inve r t ing  (2.11, w e  have the solution for %, yM, % as 

a 1/1 
x = f + ( f  - h )  M 

(2 .1)  

a a a i / a  
z = (RANGE - xM - yM) M 

where 

a 
f = x - [ s i n  (ELEV)]  oe 

a 
a - 2.2 * Z  ) * [ c o s ( E L E V ) I a  - 2 - y  * y  -[sin(ELEV)] - (zoe M oe M oe 

The  term containing z and z i n  t h e  expression for h vanishes when there i s  oe M 

no vertical offset between t h e  azimuth and e l e v a t i o n  a n t e n n a e ,  i . e . ,  when 

z When = 0 ;  ( 2 . 2 )  t h e n  becomes a closed form so lu t ion  for I&, ]k, and h. oe 

z i s  not  zero, (2.2) has to be solved i n  iterative f a s h i o n  (between $ and oe 

zn) t o  r e c o n s t r u c t  t h e  a i rc raf t  posi t ion i n  t h e  MLS frame. However, i n  the  
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f i l t e r  i n i t i a l i z a t i o n  r o u t i n e ,  no  s i g n i f i c a n t  errors are i n t r o d u c e d  by 

ignoring t h i s  last  term and using the  closed form so lu t ion  of (2.2). F ina l ly ,  

i n  the runway i n e r t i a l  system, 

x = x  - x  r w  az M 

Yaz + YM 

r w  az M 

- - 
Y r w  

z = z  - 2  

where xrwf Y,, and zrw give u s  t h e  i n i t i a l  aircraft pos i t i on  estimates i n  t h e  

runway frame. 

The IMU r o l l ,  pitch and yaw measurements are rep l i ca t ed ;  averaging  these 

d u a l  c h a n n e l  v a l u e s  d i r e c t l y  gives u s  t he  i n i t i a l  estimates for the aircraft 

a t t i tude as 

4 = (4ml + 4m,>/2 

e = (ernl + e m 2 m  (2 .4)  

$ = '$ml + 'lm2)/2 - J,R 

where fiR i s  t h e  runway yaw, f ixed  for t h e  given runway configurat ion.  

The  g e n e r a l i z e d  expres s ions  for the  aircraft v e l o c i t y  i n  t h e  body frame 

are 

v = IAs*cos Q'COS p bx 

= IAs.cos a - s i n  p vbY 

v = IAS-sin a bz 

where a i s  the  angle  of attack and p i s  the  s i d e s l i p  angle .  

Given ( 2 . 5 )  and the  Euler angles  4, 8 and J, from (2.4),  w e  can transform 

the  aircraft ve loc i ty  i n  t he  body frame to the navigation frame ( i . e . ,  runway 

frame) and compensate for the horizontal  winds, wx and w to y i e l d  
Y' 



( 2 . 7 )  

v = (4) -IAS*(cacp) + (s&c8) *IAS*(casP) rz  

+ (c@ce)-IAS.(sa) + wz 

R e a l i s t i c a l l y ,  a and 0 are f a i r l y  small angles  and can be assumed t o  be zero 

s i n c e  these e x p r e s s i o n s  a re  used only i n  the f i l ter  i n i t i a l i z a t i o n  rou t ine ;  

and so t h e  errors caused by t h i s  assumption are r e l a t i v e l y  i n s i g n i f i c a n t  and 

are of fse t  by t h e  i n i t i a l  uncertainty i n  t he  f i l t e r .  Thus, assuming a = p = 

0, w e  get  the  i n i t i a l  estimates for aircraft  v e l o c i t y  as 

v = IAS.ctl.c$ + wX r x  

v = IAs.ce.s+ + w 
r Y  Y 

rz v = - 1 A S - 5 8  

The only remaining no-fai l  filter states to  be i n i t i a l i z e d  are t h e  ho r i -  

z o n t a l  winds.  For our i n i t i a l i z a t i o n  r o u t i n e ,  w e  have decided to set both 

w i n d  estimates to a value of zero.  T h i s  i n i t i a l  estimate, combined w i t h  a 

higher  i n i t i a l  uncertainty on the w i n d  es t imat ion error covariances (10 m / s  as 

opposed to  0.75 m / s )  a n d  the slowly t ime-vary ing  wind model [l], g a v e  u s  

s a t i s f a c t o r y  results i n  terms of w i n d  es t imat ion performance. In a practical 

s i t u a t i o n  (e .g . ,  t r a n s i t i o n  from VORTAC to MLS), t h e  knowledge of t h e  winds 

from t h e  e n r o u t e  p o r t i o n  of t h e  f l i g h t  can  be used t o  i n i t i a l i z e  t h e  wind 

estimates i n  t h i s  f i l t e r  i n i t i a l i z a t i o n  scheme. 

W e  now p r e s e n t  a brief overview of t h e  NFF performance wi th  t h e  i n i t i a l -  

i z a t i o n  r o u t i n e  described above, p a r t i c u l a r l y  wi th  respect t o  t h e  changes  i n  
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the estimation performance over that discussed i n  chapter 2 i n  [l]. The 

f l i g h t  recorded sensor data used to evaluate this performance (and to  generate 

a l l  the results presented i n  this report) covers about 266 seconds of f l i g h t ,  

a t  a sampling frequency of 20 Hz for each sensor. The f l i g h t  starts when the 

a i r c r a f t  enters MLS coverage and ends a t  an altitude of 30.48 m when radar 

altimeter activation occurs. In the runway frame, the a i r c ra f t  i s  i n i t i a l l y  

a t  approximately (-17000 m ,  -4800 m ) ,  a t  an altitude of 760 m and with the 

ground track oriented roughly 30° relative t o  the runway. A bank maneuver is 

executed from 110-150 seconds t o  align the aircraft wi th  the runway. Except 

for a constant altitude during the runway alignment maneuver, the a i r c ra f t  i s  

descending at a steady 4 m/s sink rate. Plots for the aircraft ground track, 

altitude, velocity and attitude profiles have not been presented here qince 

the NFF estimation performance for these variables i s  essentially the same as 

i n  figures 2.1-2.4 i n  [ l ] .  Figure 2.2 shows the new horizontal wind estinytes 

and the normal operating bias estinrafe for the longitudinal accelerometer. In 

comparison w i t h  figure 2.5 i n  [ l ] ,  we see that the wind estimates, s t a r t i ng  

w i t h  an i n i t i a l  estimate of zero, converge t o  the true values i n  about 25 

seconds. This i s  due to  the high ini t ia l  uncertainty placed on the i n i t i a l  

wind estimates and the time required for the reduction i n  the accelerometer 

bias estimation uncertainty. Figure 2.3 shows the NFF bias es t imtes  for the 

l a t e ra l  and vertical  accelerometers. For each of the accelerometers, we see 

that the bias estimates show larger transients when compared w i t h  ea r l i e r  

results (figures 2.6 and 2.7 i n  [ l ] ) ,  but  the convergqnce time to  steady state  

and the steady state values thanselves are the same as before. 

Figures 2 . 4  and 2 . 5  present the no-fail f i l t e r  residual time histories 

for MLS azimuth, MLS elevation, MLS range and IAS,  respectively. Again, the 

only significant change i n  the behavior of these residuals from those depicted 

i n  [ l ]  (figures 2.9, 2.10) can be seen i n  the in i t ia l  10-15 second time span 

- 10 - 
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while  t h e  wind estimates and accelerameter bias estimates are i n  t h e  t ransient  

phase. The a i r c ra f t  p o s i t i o n  and v e l o c i t y  estimates (no t  presented) are 

almost identical to  earlier results. 

T a b l e  2.1 presents t h e  empirical statistics f o r  t h e  no- fa i l  f i l t e r  resid- 

u a l  sequences,  c a l c u l a t e d  over the ent i re  266 seconds f l i g h t  d a t a  run. These 

residual sequences s t i l l  exhib i t  low sample means and standard deviations and 

t h u s  con t inue  t o  v e r i f y  t h e  good estimation performance of t h e  NFF with t h e  

f l i g h t  recorded data u s e d .  

T a b l e  2.1: No-fail f i l t e r  (NFF) residuals statistics: nominal 
20 Hz run with auto-initialization rout ine  

MLS-Azim. 1.65E-03 7.41E-03 3.05E-02 -2.63E-02 deg 

MLS-Elev. 4.56E-04 8.3OE-03 3.29E-02 -2.48E-02 deg 

MLS-Range 1.78E-01 2.02E+00 1.05E+01 -1.98E+01 m 

I S  1.60E-01 8.30E-01 4.66E+00 -4.19E+00 m / s  

IMU-Rol l  -1.46E-03 3.7OE-02 1.29E-01 -1.32E-01 deg 

IMU-Pitch 3.00E-03 2.47E-02 1.39E-01 -7.30E-02 deg 

IMU-Yaw 4.14E-04 1.llE-01 6.33E-01 -4.5413-01 deg 

2.2 N e w  Isolation Logic and FDI Performance 

As discussed i n  section 3.3 i n  [l], w e  had replaced t h e  mul t ip l e  hypo- 

t h e s i s  test i n  t h e  FINDS a l g o r i t h m  p e r f o r m i n g  s i m u l t a n e o u s  detection and 

isolation with a h i e r a r c h i c a l  detect ion and i s o l a t i o n  tes t .  The new set  o f  

mean d e t e c t i o n  t es t s  over various moving window lengths  of t h e  averaged no- 

f a i l  f i l t e r  r e s i d u a l s  was implemented to t a k e  advantage of t h e  following: 

- 15 - 



(i) a bank of f i r s t  order detectors equal t o  the t o t a l  number of 

replicated active sensor channels would not have to be executed a t  

every time instant ,  thus resulting i n  significant execution time 

savings ; 

(ii) the empirical mean of the averaged NFF residual sequences are 

always lower than those for the expanded NFF residuals, thus 

allowing a Chi-squared test of mean on these residuals; 

(iii) on the basis of the incremental information behavior, various 

moving windows of these averaged NFF residuals could be tested, 

t h u s  making the detection t e s t s  tuned to fa i lures  i n  various 

sensor subsets. 

I n  [l], tes t  results were presented summarizing the fa i lure  detection 

performance of t h i s  new strategy wi th  failures injected into various sensors 

at three different times during the f l i g h t .  However, the f a i lu re  isolat ion 

and failure level  estimation were not discussed as the isolation algorithm had 

not  been updated t o  take i n t o  account the new detection strategy. Here, we 

present the subsequent changes made to the FINDS FDI algorithm and a series of 

results to  validate these changes. 

The multiple hypothesis test allowing simultaneous failure detection and 

isolation i n  the old strategy required a bank of f i r s t  order Kalman f i l t e r s ,  

each hypothesizing a fa i lure  occurrence i n  a given replication of a given 

sensor. I n  t h e  new strategy, these f i r s t  order f i l t e r s  a r e  activated only 

a f t e r  the detection of a fa i lure  i n  order to isolate failures and estimate 

failure levels. This necessitated the following modifications to the old FDI 

module : 

(i) Since the f i r s t  order estimators a re  driven by the expanded i n -  

novations of the NFF, these expanded residuals need to be saved 
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across the  same moving windows as the averaged NFF residuals i n  

the detection module. 

(ii) Referring to equation 2.34a, 2.40, and 2 . 4 2  i n  [ a ] ,  the bank of 

f i r s t  order estimators require the covariance of the expanded 

residuals. This covariance i s  calculated using the prediction 

error covariance for the NFF states, the NFP gain and the expanded 

nonlinear measurement matrix a t  each t i m e  instant w i t h i n  a given 

detection window. To avoid the associated computational burden, 

these matrices are assumed to be constant across the entire detec- 

t ion window length i n  the new strategy. Our tests indicate that 

the incremental information to the various f i r s t  order estimators 

does not degrade significantly under  t h i s  assumption. 

(iii) When the detector for moving window of length N samples declares a 

sensor fa i lure ,  t h e  isolation strategy assumes that t h e  failure 

occurred exactly N samples prior to the detection. So the ser ies  

of f irst  order estimators are executed iteratively across the last 

N samples of the saved NFF expanded residuals using the current 

composite NFF matrices i n  assumption (ii) above. The failure 

compensated residuals generated by these f i l t e r s  drive the l ike- 

lihood r a t io  computers i t e ra t ive ly  and thus, a t  the end of N 

iterations we have a bank of likelihood rat ios;  the minimum of 

these ratios indicates which sensor has failed. 

(iv) The incremental information analysis of [l], has shown that meas- 

urement sensor failures are reflected instantaneously i n  the NFF 

residuals whereas input sensor failures take longer t o  propagate 

through the NFF dynamics. Based on this incremental information 

behavior, we have selected three separate detector windows of 

lengths  one, f i v e ,  and ten samples. The knowledge of the 
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different failure propagation speeds has been incorporated in to  

t h e  i s o l a t i o n  module v ia  the following. Since Only a NFF 

measurement sensor failure can cause a failure declaration by the 

detector of window length one, only those f i r s t  order estimators 

corresponding to NFF measurement sensors are executed under such a 

f a i l u r e  declaration. On the other hand, i f  the detector of length 

t en  samples detects a failure, either one of the NFP input  sensors 

or t he  IAS measurement sensor i s  assumed t o  have failed and the 

corresponding estimators are activated i n  the isolation module 

since any NFF measurement sensor failure would get detected before 

reaching the detector of window length ten. The window of f ive  

samples i s  capable of detecting either small bias failures i n  NFF 

measurement sensors or large bias failures i n  NFF i n p u t  sensors; 

i n  such a case,  a l l  the  f i r s t  order f i l t e r s  a r e  executed 

iteratively . 
(v) After a failure i s  detected and isolated, the detector modules are 

not executed for N samples after an isolation. This prevents the 

use of corrupted residuals i n  the detection test  u n t i l  the ap- 

propriate w i n d o w  of NFF expanded residuals i s  f i l l e d  again. 

We now present the bias fa i lure  detection and isolation performance 

results for t h e  composite FINDS algorithm covering the same se t  of runs de- 

scribed i n  Table 3.4a i n  [l] which covers only the detection performance 

without any isolation. The only difference i s  that wi th  the auto-initializa- 

t i o n  routine implemented, the f i r s t  iteration of f l i g h t  data i s  now treated as 

t = O  seconds and used t o  initialize the NFF. Thus, the failure injection times 

get sh i f ted  by one sample or 0.05 seconds to  ensure that the failures continue 

t o  be injected a t  the exact same instant i n  the actual f l i g h t .  
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Table 2.2a shows the results from the f i r s t  set of runs which include a 

sensor failure occurring a t  82.05 seconds into the f l i g h t  -- note that a l l  the 

bias estimates have converged by this time and the bank maneuver has not yet 

been executed. It i s  interesting to note that a l l  of the i n p u t  sensor f a i l -  

ures except for the pitch ra te  gyro failure get detected by the detector of 

window length ten samples, while  a l l  the measurement sensor fa i lures  except 

the I A S  sensor failure get detected instantaneously; i.e., by the detector of 

window length one sample. I n  general, the failure level estimation accuracy 

i s  h igh  whenever the detection time i s  equal t o  the length of the moving 

detection w i n d o w .  Hence, the accuracy of the failure level estimate i s  h i g h  

for the measurement sensors and moderate for the rate  gyros. The large 

failure level estimation errors for the accelerometers are caused by the long 

detection times for these instruments which violate the assumption of the 

f a i lu re  occurring ten samples prior to  the detect ion.  However, t hese  

inaccurate accelerometer failure level estimates do not have an unfavorable 

impact on the FINDS algorithm since failure level estimates are used only t o  

increment the NFF covariance after the isolation of the failed sensor. 

Table 2.2b, shows the results for  the second series of runs i n  which 

single failures are injected i n t o  the f l i g h t  data at 145.35 seconds during the 

runway alignment maneuver. Again, we see that the performance of the d i f -  

ferent window length detectors is  as predicted wi th  the larger windows allow- 

ing  inpu t  sensor failure informtion to  propagate i n t o  t h e  residuals. In  t h i s  

set  of runs, there a re  two interesting observations. I n  the case of the 

lateral accelerometer failure, a false isolation of t h e  r o l l  ra te  gyro oc- 

curred a t  t=150.10 seconds with a failure level estimate of 0.255 deg/s. This 

indicates that the incremental informtion available t o  the isolation strategy 

wi th in  the detection time span i s  insufficient for correct isolation. Accord- 

i n g  to the implemented isolation logic, the detector of window length ten 
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samples i s  inactivated up t o  t=150.60  seconds a t  which time i t  detects the 

propagating injected failure -- this time the isolation module does a correct 

isolation of the lateral accelerometer failure. 

I n  the case of the I M U  sensor failures, detection and correct isolat ion 

was followed by a second fai lure  when the detector of window length ten 

samples was activated. Further investigation into the cause of this behavior 

points towards the NFF expanded residuals of the IMU pitch attitude sensors. 

When both replications of the IMU are active, the various detectors use t h e  

NPP residuals of the averaged a t t i tude  measurements, which are almost zero 

mean (see figures 2.11-12 i n  [l]. B u t ,  the individual expanded residuals of 

each IMU a t t i tude  sensor are biased due to normal dynamic errors during the 

aircraft bank maneuver. Thus when an IMU sensor fa i lure  i s  isolated,  the 

reconf iguration logic throws out  the entire IMU replication; the subsequent 

use of either of these biased residuals i n  the test-of-mean causes t h e  

detectors to indicate a failure. Thus, the reconfiguration logic for the IMU 

sensors includes compensation i n  the detectors for t h i s  biased behavior, and 

we do not see any Occurrence of IMU false alarms now. 

Table 2 . 2 ~  consists of the third set  of runs where the fa i lures  a re  

injected during the aircraft final descent, or 238.65 seconds into the f l i g h t .  

The isolation strategy continues to show acceptable accuracy i n  terms of 

correct isolation of the failed sensor and also i n  terms of the estimation of 

the f a i lu re  level. A s  i n  the second s e t  of runs,  t he  f a i l e d  l a t e r a l  

accelerometer run r e su l t ed  i n  a f a l s e  i so l a t ion  of the longitudinal 

accelerometer followed by a cor rec t  i s o l a t i o n .  This i s  because t h e  

incremental information for the la te ra l  accelerometer i s  the lowest of a l l  

sensors, referring back to figures 3.2a-d i n  [ l ] .  

I n  the second set  of runs of Table 2.2b, the case of the roll  rate gyro 

false alarm under a lateral accelerometer f a i lu re  i l l u s t r a t e s  t h e  need for  



Table 2.2a: FDI performance with new isolation strategy: 
f a i l u r e s  injected at  82.05 s 

ACC . -Long. 

Acc .-Lat. 

A c c  . -Vert . 
Gyr 0-Ro 11 

Gyro- P i t ch  

Gyro-Yaw 

MLS-Azim. 

MLS-Elev. 

MLS-Range 

IAS 

IMU-Roll  

IMU-Pitch 

IMU-Yaw 

86.10 s (10) 

87.25 s (10) 

87.00 s (10) 

82.50 s (10) 

82.50 s (5) 

83.65 s (10) 

82.05 s (1) 

82.05 s (1) 

82.05 s (1) 

82.50 s (10) 

82.05 s (1) 

82.05 s (1) 

82.05 s (1) 

4.05 s 1.47 

5.20 s 1.28 

4.95 s 1.47 

0.45 s 0.90 

0.45 s 1.00 

1.60 s 1.00 

0.0 s 0.18 

0.0 s 0.18 

0.0 s 40.00 

0.45 s 9.00 

0.0 s 1.50 

0.0 s 2.00 

0.0 s 4.00 

11.137 m/s/s 

10.987 m/s/s 

9.533 m/s/s 

0.831 deg/s 

2.252 deg/s 

2.401 deg/s 

0.173 deg 

0.181 deg 

40.482 m 

10.239 m/s 

1.412 deg 

1.862 deg 

4.087 deg 

[a] Numbers i n  parentheses indicate t h e  length of t h e  moving window 
f o r  t h e  detector which detected t h e  f a i l u r e .  
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Table 2.2b: FDI performance with new isolation strategy: 
failures injected a t  145.35 s 

ACC . -Long. 
Acc.-Lat. 

Acc .-Vert. 

Gyro-Roll 

Gyro- Pitch 

Gyr 0 - Y  a w 

MLS-Azim. 

MLS-E lev. 

MLS-Range 

I S  

IMU-Roll 

IMU-Pitch 

IMU-Yaw 

149.30 s (10) 

150.60 s (10) [bl 

149.20 s (10) 

145.70 S (5) 

145.95 S (10) 

146.75 S (10) 

145.35 s (1) 

145.35 s (1) 

145.35 S (1) 

145.75 s (10) 

145.35 s (1) 

145.35 S (1) 

145.35 s (1) 

3.95 s 

5.25 

3.85 s 

0.35 s 

0.50 s 

1.40 s 

0.0 s 

0.0 s 

0.0 s 

0.40 s 

0.0 s 

0.0 s 

0.0 s 

1.47 

1.28 

1.47 

0.90 

1.00 

1.00 

0.18 

0.18 

40.00 

9.00 

1.50 

2.00 

4.00 

11.033 m/s/s 

10.544 m/s/s 

10.256 m/s/s 

1.865 deg/s 

1.051 deg/s 

2.230 deg/s 

0.161 deg 

0.189 deg 

41.525 m 

9.594 m/s 

1.596 deg 

1.660 deg 

4.102 deg 

[a] Numbers i n  parentheses indicate the length of the moving window 
for the detector which detected the failure. 

[b] Detector of window=lO detected a failure a t  150.10 s b u t  i t  
was falsely isolated as a gyro-roll failure of magnitude 0.255 
deg/s. (Correct isolation of the injected failure occured a t  
150.60 s ) .  The false alarm was healed a t  153.60 s. 



Table 2.2~: pDI p e r f o r w e  with new isolation strategy: 
failures injected at 238.65 s 

Acc.-LOng. 242.40 S (lo) 3.75 s 1.47 10.109 m/s/s 

A c c  .-Lat. 241.85 s (10) [b] 3.20 s 1.28 19.344 m/s/s 

~cc.-Vert. 240.75 s (10) 2.10 s 1.47 16.087 m/s/s 

Gyr 0-Ro 11 239.05 s (10) 0.40 s 0.90 0.811 deg/s 

Gyro-Pitch 239.15 s (10) 0.50 s 1.00 1.119 deg/s 

Gyr 0- Yaw 240.15 S (10) 1.50 s 1.00 2.505 deg/s 

MLS-Azim. 238.65 s (1) 0.0 s 0.18 0.185 deg 

MLS-Elev. 238.65 s (1) 0.0 s 0.18 0.179 deg 

MLS -Range 238.65 s (1) 0.0 s 40.00 40.905 m 

IAS 239.85 s (10) 1.20 s 9.00 9.751 m / s  

IMU-Roll 238.65 s (1) 0.0 s 1.50 1.478 deg 

IMU-Pi tch  238.65 s (1) 0.0 s 2.00 2.109 deg 

IMU-Yaw 238.65 s (1) 0.0 s 4.00 4.084 deg 

[a] Numbers i n  parentheses indicate the  length of the  moving window 
for the  detector which detected the  failure. 

[b] Detector of window=lO detected a fai lure  a t  241.35 s but  i t  was 
falsely isolated as a acc.-long. failure of magnitude -6.104 
m/s/s. (Correct isolation of the  injected failure occured at 
241.85 s). The false alarm was healed a t  244.85 s. 
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decoupling t h e  translational dynamics related sensors from the rotational 

kinematics related sensors i n  the hierarchical FDI t e s t .  Even though the 

translational dynamics have been decoupled from the rotational kinematics i n  

the no-fail f i l t e r ,  the isolation module i s  not able t o  take advantage of t h i s  

f ac t .  Only the NFF IMU residuals should govern the FDI of the rate gyros and 

attitude sensors, and the NFF MLS and I A S  residuals should govern the FDI of 

the sensors concerned with the aircraft translational motion, i.e.,  acceler- 

ometers, MLS and I S .  This reasoning and the need to  further improve the 

execution time has led us to parti t ion the FINDS algorithm which i s  discussed 

i n  detail i n  t h e  next chapter. 



111. PARTITIONED FINDS AND MULTI-RATE IMPLR4ENTATION 

I n  t h i s  chapter, the f i r s t  section deals wi th  the parti t ioning of t h e  

FINDS algorithm into two sub-algoritbs: One processing the sensors coupled 

with the translational dynamics and the other processing those sensors coupled 

w i t h  the rotational kinematics. Since the translational portion of the NFF 

had already been decoupled from the rotational portion [l], this split-up has 

no impact on the estimation performance of FINDS. Here, we present the tes t  

results showing the resultant reduction i n  execution time by the implementa- 

t ion of these two sub-algorithms i n  paral le l  on the dual-processor target 

f l i g h t  computer. We also present a brief sumnary of the FDI performance for  

both of these FINDS subsets. I n  the second section, we discuss the changes 

made to the split-up version of FINDS i n  order t o  b r i n g  i t  to  a real-time 

operation i.e.,  a multi-rate implementation i n  which the gains and covariance 

of the bias-free and bias f i l t e rs  i n  the NFF are  updated a t  different  f re-  

quencies. A table  of execution times for various combinations of update 

frequencies i s  presented, followed by the FDI performance of one of the fre-  

quency combinations. 

3 . 1  Partitioned FINDS 

The composite FINDS algorithm with the combined translational dynamics 

and rotational kinematics has been discussed i n  [l] and i n  the previous chap- 

ter, wi th  respect to i t s  estimation performance, execution speed, program size 

and FDI performance. The composite NFF i s  of order 1 7  which includes 11 

s t a t e s  i n  the bias-free f i l t e r  (a i rc raf t  position, velocity, attitude and 

horizontal winds i n  the inertial runway frame) and six normal operating sensor 

biases estimated i n  the bias f i l t e r  ( l inear  accelerometer and r a t e  gyro 

biases). This NFF uses seven measurements (MLS azimuth, elevation, range, 

I A S ,  I M U  ro l l ,  pitch, yaw) thus necessitating the use of seventh order matrix 
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operations i n  updating and propagating the f i l t e r  estimates and a l so  i n  the 

detection strategy. As reported i n  111, a t  the nominal update frequency of 20 

€&., t h i s  composite FINDS algorithm with a program size of 116 Kb executed a t  

a speed of approximately 11 times slower than real-time on one processor of 

the dual-processor configured target f l i g h t  computer a t  a gain update f re- 

quency of 20 Hz. The acecution speed was further increased to  about 3 times 

slower than real-time ky using a 4 Hz update frequency i n  the NFF--with some 

degradation i n  t h e  estimation and FDI performance. Further modifications were 

obviously necessary to realize real-time execution. 

One of the changes made i n  the NFP design i n  [l] was the use of a con- 

stant state transition matrix as opposed to a time-varying state dependent one 

[ 4 ] ,  [SI, which had to  be updated by the par t ia l s  of the input  transition 

matrix a t  every iteration. The change not only reduced the execution time by 

20% b u t  a l so  resulted i n  decoupling the NFF translational dynamics from the 

rQtationa1 kinematics. This f a c t  along with the decision to  re ta in  the dual 

processor configured target f l i g h t  computer i n  the current phase of the pro- 

ject has prompted u s  to  par t i t ion the composite FINDS algorithm in to  two 

subsets to allow a real-time parallel processing solution as follows. 

One computer (which we henceforth refer to  as side 1) processes the 

sensors related to the the rotational kinematics: the rate gyros as NFF input 

sensors and the IMU att i tude outputs as  the NFF measurement sensors. The 

a i r c r a f t  ro l l ,  pitch and yaw attitudes are the f i l t e r  states i n  the bias-free 

portion of the NPP while the bias f i l t e r  estimates the normal operating biases 

of the r o l l ,  p i t c h  and y a w  rate gyros, This 3-state and 3-bias configuration 

uses only three measurements viz. IW roll, pitch and yaw; hence, only third 

order matrix operations are  needed. On side 1, the suite of active sensors 

consists of dual replicated IMU sensors and one replication of the r a t e  gyros 

yielding a total of nine sensors--the second replication of the rate gyros i s  



kept in stand-by for activation in the event of a rate gyro failure. Thus, 

the failure detection test uses the NFF averaged residuals of the IMU attitude 

sensors across three moving windows of lengths one, five, ten samples while 

the new isolation strategy uses the NFF expanded IMU residuals in the isola- 

tion and failure level estimation process. 

The second computer, referred to as side 2 henceforth in the report, 

processes the sensors related to the translational dynamics: the linear 

accelerometers as NPF input sensors, and MLS and IAS as NFF measurement sen- 

sors. The aircraft position, velocity and horizontal winds in the runway 

coordinates are the bias-free filter states while the bias filter estimates 

the accelerometer operating biases, thus resulting in an 8-state and 3-bias 

configuration. Since the MLS azimuth, elevation, range and IAS yield a total 

of four measurements, only fourth order matrix operations are performed on 

side 2 (with the exception of the eighth order state estimation covariance 

calculations). There are eight active sensors on this side comprised of 

single replications of the accelerometers and MLS and dual replication of the' 

I A S  sensor--again, the second replication of the accelerometer and MLS are 

kept in stand-by status. 

The advantages of using such a partitioned parallel implementation are as 

follows: 

(i) 

(ii) 

Since both modules are executed in parallel on the dual processor 

configuration of the target flight computer, this effectively 

involves only fourth order matrix operations at every sample as 

opposed to seventh order operations in the composite version-- 

yielding a significant reduction in execution time. 

On each side, the detection test is carried out for the sensors 

used by the NFP on that side only; the isolation test, thus, has 

to contend with only the active sensors in that particular module. 



This effectively avoids false alarms across dynamically non-re- 

lated sensors as i n  Table 2.2b i n  the previous chapter. 

The interactions needed between the two individual subsets on each side 

are as follows: 

(i) 

(ii) 

(iii) 

The rotational kinematics (side 1) need t h e  NFF state estimates of 

t h e  aircraft position and velocity from the translational dynamics 

side.  These a r e  used t o  c a l c u l a t e  t h e  cur ren t  a i r c r a f t  

latitude/longitude and the Coriolis and centripetal correction 

terms needed to  compensate the platform gravity force ( r e fe r  

section 2.2.1 i n  [SI). 

To augment the i n p u t  vector, side 2 needs the gravity vector 

generated on side l--this i s  calculated while estimating the 

aircraft current latitude and longitude and the correction terms 

of (i).  

Side 2 also needs the NFF s t a t e  estimates of the a i r c ra f t  a t -  

titudes from side 1 to update the i n p u t  transition matrix. 

After porting the two subsets of the FINDS algorithm on to the two sides 

of the target f l i g h t  computer, the interactions between the two sides have 

been achieved by using a DMR local data comnunication link. Also, s ide 1 was 

set-up t o  receive the incoming f l i g h t  recorded data a t  every iteration, this 

DMA l i n k  was used to transfer the sensor data to  side 2 as well. The data 

transfer rate of the DMA l i n k  i s  extremely high ( 2  Mb/s); hence, these inter- 

actions do not affect  the overall execution time of ei ther  module to  any 

noticeable extent. 

Table 3.la presents a brief overview of the difference between the com- 

posite and partitioned versions of FINDS i n  terms of program size. The reduc- 

tion i n  program size from the composite to the spli t  versions i s  mainly due to 

a reduction i n  the f i l t e r  dimensions. Note also that the two subsets i n  the 



T a b l e  3.la:  S ize  characteristics: composite vs. p a r t i t i o n e d  FINDS 

Program s ize  116 Kb 74 Kb 86 Kb 

# of states 11 3 8 

# of biases 6 3 3 

# of inputs  6 3 3 

# of measurements 7 3 4 

# of active sensors 17 9 8 

# of stand-by sensors 9 3 6 

Table 3.lb: Speed cha rac t e r i s t i c s :  composite vs. partitioned FINDS 

20 Hz 9 .oo 1.30 3.55 3.55 3.20 

10 Hz 5.37 0.92 2 .05 2.18 1.80 

5 Hz 3.44 0.75 1.37 1 .47  1.10 

4 H z  3 .05 0.72 1.23 1.32 0.95 

2 Hz 1.77 0.66 0.91 1 .05 0.67 

1 H z  1.40 0.63 0.78 0.91 0.53 

NOTE : 1) On t h e  t a r g e t  f l i g h t  computer, a l l  test runs were executed by 
using a magnetic tape read-in as t h e  f l i g h t  data in t e r f ace .  
The estimated speed with t h e  DATAC bus is  obtained by 
discount ing approximately 20 ms/cycle used by t h e  t a p e  drive. 

2) A l l  entries i n  t h e  tab le  are ratios of t h e  total  execution 
t i m e  on t h e  indicated computer to  t h e  total  simulated f l i g h t  
time of approximately 266 s. 
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dual configuration do not share any.portion of the program code or matrix 

library subroutines--these are duplicated as needed on both sides. 

The execution speed characterist ics of the composite and partitioned 

FINDS algorithm shown i n  Table 3.lb exhibit the reduction i n  execution time by 

using the parallel implementation. Note that the entries i n  the table for the 

host development computer do not ref lect  a true parallel execution but  i n -  

dividual execution times of each side. As for the target f l i g h t  computer, the 

parallel execution speed i s  limited by the speed of the translational dynamics 

f i l t e r  of side 2. Another important l imi t ing  factor i s  that for these t e s t  

runs, a magnetic tape interface was used to read i n  the f l i g h t  data at every 

iteration. This read-in interface i s  slow i n  comparison w i t h  the DATAC bus 

interface to be used i n  the actual f l i g h t  t e s t .  Assuming a 20 ms/cycle 

reading t i m e  for the tape interface, the last column of th i s  table r e f l ec t s  

the estimated speed using the DATAC bus interface and a front-end microproces- 

sor to perform variable assignments and the sensor dropout t e s t s .  Referring 

to the failure detection performance a t  various NFF update frequencies report- 

ed i n  [ l ] ,  the lowest update frequency which yielded acceptable detection 

resu l t s  was 4 Hz. In  Table 3.lb, we see that at this frequency, the parallel 

implementation on the target f l i g h t  computer i s  estimated to  execute a t  faster 

than real-time speed. 

Since the  split-up has no impact of the NFF estimation performance of 

either side, we now present the FDI performance of the partitioned implementa- 

tion for the same three sets of failure injection times given i n  the previous 

chapter f o r  the composite algorithm. Tables 3.2a,b,c depict the performance 

of the partitioned F I N D S  algorithm i n  the parallel implementation w i t h  sensor 

failures in jec ted  a t  82.05s, 145.35s and 238.65s into the same f l i g h t  recorded 

data. Note that for this set of runs, the nminal update frequency of 20 Hz 

was chosen t o  allow a direct comparison with the results of Tables 2.2a,b, and 
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T a b l e  3.2a: PDI performance df partitioned FINDS with nominal 
20 Hz u p d a t e  frequency: f a i l u r e s  i n j e c t e d  a t  82.05 s 

ROTATIONAL KINEMATICS SIDE 

Gyr 0-Roll 82.45 s (10) 0.40 s 

Gyro-Pi t c h  82.45 s (5) 0.40 s 

Gyro-Yaw 83.45 s (10) 1.40 s 

IMU-Roll 82.05 s (1) 0.0 s 

IMU-Pitch 82.05 s (1) 0.0 s 

IMU-Yaw 82.05 s (1) 0.0 s 

0.90 0.727 deg/s 

1.00 2.060 deg/s 

1.00 2.175 deg/s 

1.50 1.412 deg 

2.00 1.862 deg 

4.00 4.087 deg 

TRANSLATIONAL DYNAMICS SIDE 

A c c  .-Long. 86.15 s (10) 4.10 s 1.47 11.117 m/s/s 

A c c . - L a t .  87.25 s (10) 5.20 s 1.28 10.991 m/s/s 

A c c  .-Vert. 87.05 s (10) 5.00 s 1.47 9.697 m/s/s 

MLS-Azim. 82.05 s (1) 0.0 s 0.18 0.173 deg 

MLS-Elev. 82.05 s (1) 0.0 s 0.18 0.181 deg 

MLS-Range 82.05 s (1) 0.0 s 40.00 40.483 m 

IAS 82.50 s (10) 0.45 s 9.00 10.239 m / s  

[a] Numbers i n  parentheses indicate t h e  length of t h e  moving window 
f o r  t h e  detector which de tec ted  t h e  f a i l u r e .  
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Table 3.2b: FDI performance of p a r t i t i o n e d  FINDS with nominal 
20 Hz update frequency: f a i l u r e s  i n j e c t e d  at 145.35 s 

ROTATIONAL KINEMATICS SIDE 

Gyro- Ro 11 145.65 s (5)  0.30 s 0.90 1.630 deg/s 

Gyro-Pitch 145.80 s (10) 0.45 s 1.00 0.927 deg/s 

Gyro-Yaw 146.60 s (10) 1.25 s 1.00 2.109 deg/s 

IMU-Roll 145.35 s (1) 0.0 s 1.50 1.596 deg 

IMU-Pitch 145.35 s (1) 0.0 s 2.00 1.660 deg 

IMU-Yaw 145.35 s (1) 0.0 s 4.00 4.102 deg 

TRANSLATIONAL DYNAMICS SIDE 

Acc.-Long. 149.35 S (10) 4.00 s 1.47 11.267 m/s/s 

Ace . -La t .  150.30 s (10) 4.95 s 1.28 11.022 m/s/s 

Acc.-Vert. 149.25 s (10) 3.90 s 1.47 11.196 m/s/s 

WLS-Azim. 145.35 s (1) 0.0 s 0.18 0.161 deg 

ULS-Elev. 145.35 s (1) 0.0 s 0.18 0.189 deg 

WLS-Range 145.35 s (1) 0.0 s 40.00 41.525 m 

I S  145.75 s (10) 0.40 s 9.00 9.594 m / s  

[a] Numbers i n  parentheses i n d i c a t e  t h e  length of t h e  moving window 
f o r  t h e  d e t e c t o r  which detected t h e  f a i l u r e .  



Table 3 . 2 ~ :  FDI performance of partitioned FINDS with nominal 
20 Hz update  frequency: f a i l u r e s  i n j e c t e d  at 238.65 s 

ROTATIONAL KINEMATICS SIDE 

G y r o - R o l l  239.00 s (10) 0.35 s 0.90 0.717 deg/s 

Gyro-Pitch 239.05 s (5 )  0.40 s 1.00 1.958 deg/s 

2.256 deg/s Gyro-Yaw 239.95 s (10) 1.30 s 1.00 

IMU-Roll 238.65 s (1) 0.0 s 1.50 1.478 deg 

IMU-Pitch 238.65 s (1) 0.0 s 2.00 2.109 deg 

IMU-Yaw 238.65 s (1) 0.0 s 4.00 4.084 deg 

TRANSLATIONAL DYNAMICS SIDE 

Acc.-Long. 242.75 S (10) 4.10 s 1.47 11.394 m/s/s 

A c c  .-Lat. 241.90 s (10) [b] 3.25 s 1.28 22.079 m/s/s 

Acc.-Vert. 240.80 s (10) 2.15 s 1.47 17.295 m/s/s 

MLS-Azim. 238.65 s (1) 0.0 s 0.18 0.185 deg 

MLS-Elev. 238.65 s (1) 0.0 s 0.18 0.179 deg 

MLS -Range 238.65 s (1) 0.0 s 40.00 40.905 m 

239.85 S (10) 1.20 s 9.00 9.751 m/s IAS 

[a] Numbers i n  parentheses ind ica te  t h e  length of t h e  moving window 
f o r  t h e  detector which detected t h e  f a i l u r e .  

[b] Detector of w i n d o w = l O  detected a f a i l u r e  a t  241.35 s which 
was f a l s e l y  isolated as an IAS f a i l u r e  of magnitude 3.115 m/s. 
(Correct isolation of the injected f a i l u r e  occured a t  241.90 s). 
The f a l s e  alarm was healed a t  244.90 s. 
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c i n  t h e  previous chapter. On the rotational kinematics side, w e  see tha t  

there i s  a general reduction i n  the failure detection time ( w i t h  an appropri- 

a te  improvement i n  the failure level estimation) i n  almost every case. This 

i s  caused by the lower thresholds i n  the Chi-squared test-of-mean detection 

strategy due to a lower degree-of-freedom and also the low mean i n  the IMU NFF 

residuals. On the other hand, the translational dynamics side FDI performance 

remains essentially the same as previous results. Here, even though we have a 

lower degree-of-freedom, the  de tec t ion  thresholds cannot be reduced 

proportionately because of the unusually large residuals i n  MLS range and IAS- 

-hence, the similar results. 

Tables 3.3a,b, and c present the FDI Performance of the partitioned 

para l le l  FINDS implementation for the same three sets of runs b u t  using the 

NFF update frequency of 4 Hz, i .e.,  updating the bias-free and bias f i l t e r  

gains and covariances a t  a 4 Hz ra te .  A t  th i s  low update ra te ,  the NFF 

estimation performance (especially the bias f i l t e r  performance) i s  not as good 

as the 2 0  Hz update case [ l ] ,  yet the detection test and isolation strategy 

continue to  portray acceptable performance. On side 1, the detection times 

and f a i l u r e  level estimates are comparable to  those for the 20 Hz update runs 

presented i n  tables 3.2a, b, and c. The IMU failures continue to get detected 

instantaneously by the detector of window length one sample, resulting i n  

extremely accurate fa i lure  level estimates. The ra te  gyro fa i lures  take 

slightly longer to  get detected i n  the ini t ia l  stages of the f l i g h t  because of 

the higher uncertainty i n  the bias f i l t e r  at the 4 Hz update frequency. 

On side 2,  Table 3 . 3 ~  indicates a f a l se  isolation of the longitudinal 

accelerometer for the lateral accelerometer injected f ai lure--this behavior 

can be attr ibuted t o  the low incremental information available to the isola- 

tion strategy and also to the transients i n  the bias f i l t e r  uncertainty at  the 

4 Hz update frequency. The MLS sensor fa i lures  during each of the three 



Table 3.3a: PDI performance of partitioned FINDS with 4 Hz update 
frequency : f a i l u r e s  i n j ec t ed  a t  82.05 s 

ROTATIONAL KINEMATICS SIDE 

Gpo-Ro 11 82.45 s (10) 0.40 s 0.90 0.737 deg/s 

Gyro-Pitch 82.45 s (5)  0.40 s 1.00 2.060 deg/s 

G y r  0- Yaw 83.55 s (10) 1.50 s 1.00 2.245 deg/s 

IMU-Roll 82.05 s (1) 0.0 s 1.50 1.412 deg 

IMU-Pi t ch 82.05 s (1) 0.0 s 2.00 1.860 deg 

IMU-Yaw 82.05 s (1) 0.0 s 4.00 4.091 deg 

TRANSLATIONAL DYNAMICS SIDE 

ACC .-Long. 88.35 s (10) 5.30 s 1.47 10.838 m/s/s 

A c c  .-Vert. 93.25 s (10) 11.20 s 1.47 7.333 m/s/s 

MLS-Azim. 82.05 s (1) 0.0 s 0.18 0.182 deg 

MLS -E lev. 82.05 s (1) 0.0 s 0.18 0.182 deg 

MLS -Range 82.05 s (1) 0.0 s 40.00 40.213 m 

IAS 82.50 s (10) 0.45 s 9.00 10.147 m / s  

[a] Numbers i n  parentheses  indicate t h e  length  of t h e  moving w i n d o w  
f o r  t h e  detector which detected t h e  f a i l u r e .  



Table 3.3b: FDI performance of partitioned FINDS with 4 Hz update 
frequency: f a i l u r e s  injected a t  145.35 s 

ROTATIONAL KINEMATICS SIDE 

Gyro-Roll 145.70 s (10) 0.35 s 0.90 0.784 deg/s 

Gyro-Pitch 145.80 s (10) 0.45 s 1.00 0.964 deg/s 

Gyro-Yaw 146.60 s (10) 1.25 s 1.00 2.119 deg/s 

IMU-Roll 145.35 s (1) 0.0 s 1.50 1.603 deg 

IMU-Pitch 145.35 s (1) 0.0 s 2.00 1.649 deg 

IMU-Yaw 145.35 s (1) 0.0 s 4.00 4.094 deg 

TRANSLATIONAL DYNAMICS SIDE 

Acc.-Long. 150.20 S (10) 4.85 s 1.47 8.257 m/s/s 

Acc . -Lat . 151.15 (10) 5.80 s 1.28 12.699 m/s/s 

Acc.-Vert. 149.95 s (10) 4.60 s 1.47 14.011 m/s/s 

MLS-Azim. 145.35 S (1) 0.0 s 0.18 0.161 deg 

MLS-Elev. 145.35 s (1) 0.0 s 0.18 0.183 deg 

MLS-Range 145.35 s (1) 0.0 s 40.00 41.457 m 

I S  m / s  - - -  n.d. - - - - - 9.00 - - - - - -  

[a] Numbers i n  parentheses  indicate t h e  length of t h e  moving window 
for t h e  detector which detected t h e  f a i l u r e .  



Table 3 . 3 ~ :  F'DI performance of partitioned FINDS with 4 Hz update 
frequency: failures injected a t  238.65 s 

ROTATIONAL KINEMATICS SIDE 

Gyr o-Ro 11 239.00 S (10) 0.35 s 0.90 0.725 deg/s 

Gyro-Pitch 239.05 s (5)  0.40 s 1.00 1.965 deg/s 

Gyr o-Yaw 239.95 S (10) 1.30 s 1.00 2.245 deg/s 

1.50 1.477 deg 238.65 s (1) 0.0 s IMU-Roll 

2.00 2.108 deg IMU-Pitch 238.65 s (1) 0.0 s 

IMU-Yaw 238.65 s (1) 0.0 s 4.00 4.088 deg 

TRANSLATIONAL DYNAMICS SIDE 

A c c  .-Lat . 242.05 s (10) [b] 3.40 s 1.28 20.415 m/s/s 

Acc.-Vert. 240.95 s (10) 2.30 s 1.47  16.853 m/s/s 

MLS-Azirn. 238.65 s (1) 0.0 s 0.18 0.184 deg 

MLS-Elev. 238.65 s (1) 0.0 s 0.18 0.179 deg 

MLS-Range 238.65 s (1) 0.0 s 40.00 40.912 m 

IAS 239.90 s (10) 1.25 s 9.00 9.775 m/s 

[a] Numbers  i n  parentheses indicate t h e  length of t h e  moving window 
f o r  t h e  de tec tor  which detected t h e  f a i l u r e .  

[b] Detector of w i n d o w = l O  detected a f a i l u r e  a t  241.55 s which was 
f a l s e l y  isolated as a acc-long. failure of magnitude -8.44 rn/s/s. 
(Correct isolation of t h e  injected f a i l u r e  occured a t  242.05 s). 
The f a l s e  alarm was healed a t  245.05 s. 



f l i g h t  segments are detected and isolated with the same accuracy and detection 

speed as i n  the nomhal runs. Except for the maneuver segment, the I A S  sensor 

failures are also detected and isolated accurately. During the maneuver, the 

errors  due to  nonlinearities (caused by the low NFF update frequency) and the 

dynamic w i n d  model absorb part of the injected bias i n  the I A S  sensor. This 

resu l t s  i n  t h a t  particular failure being not detected; a subsequent test run 

with a higher injected failure level (15 m/s> resulted i n  a FDI performance 

equivalent to  the run  w i t h  20 Hz update frequency. I t  i s  also interesting to 

see the performance of the healer algorithm i n  a l l  the cases involving ei ther  

f a l se  detection or fa l se  isolation; i n  each case, the sensor i n  question i s  

healed a t  the end of the healing window length of 3 seconds. 

3.2 FINDS Multi-Rate Implementation 

In  chapter 2 i n  [ l ] ,  we had presented the estimation performance of the 

FINDS NFF using various update frequencies between 20 Hz and 1 Hz. Satisfac- 

tory state estimation was noted even for the low update frequency of 1 Hz by 

monitoring t h e  s t a t i s t i c s  of the NFF residual sequences. However, the bias 

f i l t e r  performance degraded as the update frequency was lowered due to  the 

increased time taken by the bias estimates to converge to steady-state values. 

The F D I  performance of FINDS with the lower NFF update frequencies, as  

given i n  chapter 3 i n  [ l ]  and i n  the previous section, reveals that the input  

sensor F D I  i s  affected the most; the detection times are large i n  most cases 

and t h e  injected f a i lu re  goes undetected i n  some instances of the acceler- 

ometer failures. A n  analysis shows that this behavior i s  caused by the longer 

delay times of the bias estimation uncertainty; a high prediction error covar- 

iance a t  the time of the injected failure results i n  the bias estimates track- 

i n g  the added bias fa i lure  and converging to  new steady-state values. This 
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fact has led us to study the effect of using higher update frequencies for the 

bias f i l t e r  covariance than for the other portions of the NFF. 

Figure 3.1 shows the chronological order of the various tasks to be 

performed i n  the NFF via a flow chart representation; by executing a l l  the 

blocks numbered 1 through 13 i n  the estimation process, the nominal 20 Hz 

update frequency i s  realized. We can improve the bias estimation performance 

by updating t h e  bias f i l t e r  covariance a t  a higher frequency than the remaind- 

er of the NFF i n  one of two ways: 

(A) Bias-free vs. bias f i l t e r  spli t  

In t h i s  multi-rate structure, the bias f i l t e r  i s  executed a t  a 

higher frequency than the bias-free f i l t e r .  Referring to figure 

3.1, this implies executing blocks 2 ,  3, 6 ,  7 ,  8 a t  one frequency 

and blocks 9, 10 a t  higher update rates. Note that blocks 1, 4, 5, 

11, 12, 13 need to be executed a t  every iteration regardless of the 

update frequencies i n  use. 

(B) Gain vs. covariance update spli t  

In  t h i s  multi-rate structure, the bias-free and bias f i l t e r  gains 

are u p d a t e d  at one frequency while the respective covariances are  

updated a t  a higher frequency. Thus, blocks 6, 7, 9 are updated a t  

a lower frequency than blocks 2, 3, 8, 10; again, blocks 1, 4, 5,  

11, 12, 13 have to be executed a t  a 20 Hz update rate. 

Table 3 .4  gives a summary of the execution speed achieved by the com- 

posite F I N D S  algorithm and the partitioned FINDS algorithm for various fre- 

quency combinations i n  options (A)  and (B) above. I n  the case of the bias- 

f ree/bias  f i l t e r  frequency sp l i t ,  the choice of update rates i s  governed by 

these conditions: 

(i) t h e  bias f i l t e r  update frequency should be greater than the bias- 

free f i l t e r  update rate, 



Table 3.4: Execution speed s b r y :  bias-free/bias and ga in  covariance 
spl i t  

BIAS-FREE/BIAS SPLIT 

5 H z / 2 0 H z  5.55 1.02 1.99 1.77 1.40 

1 H z / 2 o H z  4.72 0.97 1.66 1.66 1.28 

s H z / 1  Hz 4.36 0.86 1.62 1.62 1.24 

l H z / l O H z  3.55 0.80 1.29 1.16 0.79 

l H z / 5  Hz 2.64 0.70 1.03 1.02 0.64 

GAIN/COVARIANCE SPLIT 

5 Hz / 20 Hz 6.62 0.98 2.72 3.05 2.67 

1 Hz / 20 Hz 6.09 0.92 2.60 2.99 2.62 

S H z / l O H z  4.70 0.83 1.85 2.05 1.67 

1 Hz / 10 Hz 4.15 0.76 1.70 1.85 1.47 

1 H z / 5  Hz 2.90 0.68 1.21 1.36 0.99 

NOTE : 1) All entries i n  t h e  t ab le  are ratios of t h e  total execut ion 
time on t h e  indicated computer to t h e  total simulated f l i g h t  
t i m e  of approximately 266 s. 
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(ii) t h e  bias-free f i l t e r  should be updated a t  5 Hz or lower for real- 

time execution. 

The f i r s t  set  of these runs shows that we have an estimated real-time execu- 

tion on the target f l i g h t  computer when the bias-free f i l t e r  runs a t  a 1 Hz 

frequency and the bias f i l t e r  is  updated a t  10 Hz or less. 

The second part of the table deals w i t h  the gain/covariance frequency 

spli t .  Here again, the choice of update rate i s  governed by, 

(i) both bias-free and bias covariances should be updated a t  fas te r  

rates than the respective gains, 

(ii) t h e  gain update rates should be 5 Hz or lower fo r  rea l - t ime 

execution. 

This second set of runs reveals an estimated real-time run on the target 

f l i g h t  computer for only the 1 H z / 5  Hz gain/covariance s p l i t .  Another inter- 

esting point i n  both sets of runs i s  that the rotational kinematics side (side 

1) executes faster than real-time i n  a l l  the cases except the 5 Hz/20 Hz bias- 

free/bias split. The translational dynamics side i s  the l i m i t i n g  factor i n  

the real-time set-up; hence, side 1 can be configured with almost any fre- 

quency combination without  losing real-time performance. This i s  important 

because both the estimtion performance and FDI performance can be optimized 

for real-time operation with the appropriate choice of update frequencies. 

The execution speed resul ts  presented so far  i n  th i s  report for the 

partitioned FINDS algorithm show that side 2 executes abou t  two times slower 

than side 1 and hence i s  the l imi t ing  factor i n  a real-time realization. Run- 

time analysis performed on the various blocks of Figure 3.1 indicate that the 

maximum amount of time i n  a given cycle i s  spent i n  block 8 of side 2; i.e., 

i n  updating the bias-free covariance of the translational dynamics f i l t e r .  

This i s  primarily due to the number of s t a t e s  involved ( 8  s t a t e s )  which 

results i n  eighth order nratrix manipulations. In  order to run this block at  a 
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di f fe ren t  frequency, we need a multi-rate implementation where the four quan- 

t i t i e s  viz bias-free f i l t e r  gain (gnx) ,  bias-free f i l t e r  covariance (cvx), 

bias f i l t e r  gain (gnb) ,  and bias f i l t e r  covariance (cvb) are a l l  updated a t  

different rates. 

Using the FDI resu l t s  of Tables 3.3a-c and combining the constraints of 

options A and B above, w e  have the following boundary conditions on the update 

rates: (denoting f as frequency) 

(i) fcvb 

gnb 
(ii) f 

cvb' fcvx (iii) f 

gnb' fgnx (iv) f 

f f cvx' fcvb8 gnx' gnb discrete f 

> f  - gnx 

> 4 Hz 

B [lHz,2Hz,4Hz,5Hz,lOH~,20~] 

The five constraints above yield about eighteen different combinations of 

update rates for the four portions of the NFF on e i ther  side. Table 3.5 

presents the execution speed sumnrary for these possible combinations. It i s  

seen that a t  least  s i x  of these choices resul t  i n  a real-time end-to-end 

execution on side 2; side 1 continues to execute a t  better than real-time 

speed for a l l  the frequency permutations i n  the table. 

We now consider a sample parallel implementation using different m u l t i -  

rate update frequencies on both sides to  ensure an end-to-end real-time run. 

The NFF estimation performance of both sides i s  discussed and we also present 

the FDI performance of both subsets for the three sets  of f a i lu re  runs a s  

before. 

Tables 3.lb, 3.4, and 3.5 indicate that the rotational kinematics s ide 

executes fas ter  than real-time for a l l  the frequency combinations except the 

nominal 20 Hz update case. Thus ,  we can choose a 10 Hz update rate for fCVX, 
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Table 3.5: Execution speed summary: multi-rate updates 

1 0 , 2 0 , 2  , 4  4.83 0.89 1.98 2.03 1.66 

5 , 2 0 , 2  , 4  4.07 0.84 1.64 1.55 1.17 

4 , 2 0 , 2  , 4  3.91 0.84 1.57 1 . 4 1  1.04 

5 , 1 0 , 2  , 4  3.14 0.76 1.37 1.42 1.05 

4 , 1 0 , 2  , 4  2.99 0.76 1.31 1.30 0.92 

4 r 4  1 2  I 4  2.53 0.72 1.17 1.25 0.87 

1 0 , 2 0 , 1  , 4  4.78 0.88 1.97 2.02 1.65 

5 , 2 0 , 1  , 4  4.01 0.84 1.62 1.53 I. 15 

4 , 2 0 , 1  , 4  3.86 0.83 1.55 1.40 1.03 

5 , 1 0 1 1  , 4  3.09 0.76 1.35 1 . 4 1  1.03 

4 , l O , l  , 4  2.94 0.76 1.29 1.30 0.92 

4 r 5  1 1  r 4  2.48 0.71 1.15 1.24 0.86 

1 0 , 2 0 , 1  , 2  4.62 0.86 1.93 2.00 1.62 

5 , 2 0 , 1  , 2  3.85 0.83 1.60 1.50 1.12 

4 , 2 0 , 1  , 2  3.69 0.81 1.53 1.39 1.02 

5 , l O , l  , 2  2.92 0.74 1.32 1.39 1.02 

4 , l O , l  , 2  2.77 0.73 1.25 1.27 0.89 

4 r 5  1 1  I 2  2.31 0.69 1.11 1.20 0.83 

NOTE : 1) A l l  entries i n  t h e  table are ratios of t h e  total execution 
t i m e  on t h e  indicated computer to t h e  total simulated f l i g h t  
t ime of approximately 266 s. 
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on side 1 assuring the least degradation in both fcvb' fgnx' and f 

estimation and FDI performance from the nominal run. This choice yields an 

execution speed of 0.92 times real-time (refer Table 3.lb) on the host 

developnent computer and an estimated similar or faster speed on the target 

flight computer with the use of the DATAC data bus interface. On side 2, we 

see from Table 3.5 that a choice of six multi-frequency combinations are 

possible to ensure a real-time end-to-end execution. For our test run 

implementation, we have selected the 4 Hz, 10 Hz, 2 Hz, and 4 Hz combination 

for the update rates for fCVY, fcvb, fgnx, and fgnb, 1: espec t ively. This 

gnb 

Table 3.6: NFF residuals statistics for sample parallel 
implementation with multi-rate updates 

Side 1 Update Rates: Fcvx=lO Hz, Fcvb=lO Hz, Fgnx=lO Hz, Fgnb=lO Hz 

Side 2 Update Rates: FCW= 4 Hz, Fcvb=lO Hz, Fgnx= 2 Hz, Fgnb= 4 Hz 

ROTATIONAL KINEMATICS SIDE 

IMU-Roll -7.36E-04 3.693-02 1.29E-01 -1.301~-01 deg 

It4LFZXS 1.473-03 2.46E-02 1.3613-01 -7.47E-02 deg 

IMU-Yaw -5.28E-04 1.llE-01 6.28E-01 -4.57E-01 deg 

TRANSLATIONAL DYNAMICS SIDE 

MLS-Azim. 2.91E-03 7.4912-03 3.42E-02 -2.7412-02 de 

MLS-Elev. 1.42E-04 7.28E-03 3.15E-02 -2.21E-02 deg 

MLS-Range 1.74E-01 1.97E+00 1.03E+01 -1.94E+01 q 

IAS 1.18E-01 7.66E-01 4.65E+00 -4.19E+00 m/s 
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choice yields an estimated speed Of 0 .92 times real-time for side 2 on the 

target f l i g h t  computer i n  conjunction with the faster DATAC interface. 

Table 3.6 presents the NFF residuals statist ics as a measure of estima- 

tion performance of the two sides, i n  the sample paral le l  implementation 

outlined above. I n  comparison with the nominal frequency composite algorithm 

estimation performance shown i n  Table 2.1, we see that the statist ical  be- 

havior of these NFP residuals i s  very similar i n  the sense that they portray 

the same low means and standard deviations, thus indicating good NFF estim- 

ates. Time history plots of the bias/state estimates (not  shown here) veri-  

f ied t h i s  assertion. The failure detection and isolation performance of t h i s  

multi-rate parallel implementation i s  presented i n  the next three se t s  of 

results. 

Table 3.7a presents the resul ts  of the f i r s t  ser ies  of runs w i t h  the 

fa i lure  occurrence a t  82.05 s. Keeping the 4 Hz update FDI performance of 

Table 3.3a as the acceptable baseline for a real-time run, the improvement 

here i n  the case of the accelerometer failures i s  iwediately evident. The 

longitudinal and vertical accelerometers show a 10% and 25% faster  detection 

time, respectively; the lateral accelerometer failure which went undetected i n  

the 4 Hz case is now detected and correctly isolated 7 .15  seconds a f t e r  i t s  

injection. The MLS sensor failures on the translational dynamics side and the 

IMU sensor failure on the rotational kinematics side are detected and isolated 

instantaneously as i n  the nominal case. The I A S  and rate gyro sensor FDI i s  

also similar t o  that of the 20 Hz update run (refer Table 3.2a). 

I n  the second se t  of runs, the results with sensor failures injected a t  

145.35 s are shown i n  Table 3.7b. Again, the accelerometer FDI performance 

shows faster detection by 0.1 to 0.25 seconds than for the 4 Hz update case of 

Table 3.3b. The MLS, IMU,  and rate gyro sensor FDI continues to show the same 

excellent performance as the 20 Hz case of Table 3.2b. The I A S  sensor failure 



Table  3.7a: FDI performance for sample parallel implementation wi th  
multi-rate updates: f a i l u r e s  i n j ec t ed  at 82.05 s 

Side  1 update Rates: Fcvx=lO Hz, Fcvb=lO Hz, Fgnx=lO Hz, Fgnb=lO Hz 

Side  2 Update Rates: FCvx= 4 Hz, Fcvb=lO I&, Fgnx= 2 - 8  Fgnb= 4 Hz 

ROTATIONAL KINEMATICS SIDE 

Gyro-Ro 11 82.45 s (10) 0.40 s 0.90 0.734 deg/s 

Gyro-Pitch 82.45 s (5) 0.40 s 1.00 2.064 deg/s 

Gyro-Yaw 83.45 s (10) 1.40 s 1.00 2.163 deg/s 

IMU-Roll 82.05 s (1) 0.0 s 1.50 1 . 4 1 1  deg 

0.0 s 2.00 1.861 deg IMU-Pitch 82.05 s (1) 

IMU -Y a w  82.05 s (1) 0.0 s 4.00 4.088 deg 

TRANSLATIONAL DYNAMICS SIDE 

A c c  . -Long. 86.85 s (10) 4.85 s 1.47 11.194 m/s/s 

A c c  . -La t .  89.20 s (10) 7.15 s 1.28 11.031 m/s/s 

A c c  .-Vert. 90.45 s (10) 8.40 s 1.47 11.423 m/s/s 

MLS-Azim. 82.05 s (1) 0.0 s 0.18 0.183 deg 

MLS-Elev. 82.05 s (1) 0.0 s 0.18 0.182 deg 

MLS -Range 82.05 s (1) 0.0 s 40.00 40.256 m 

IAS 82.50 s (10) 0.45 s 9.00 10.047 m/s 

[a] Numbers i n  parentheses indicate t h e  length of t h e  moving window 
f o r  the detector which de tec t ed  t h e  f a i l u r e .  
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T a b l e  3.7b: FDI performance f o r  sample p a r a l l e l  impleeentat ion with 
multi-rate updates: f a i l u r e s  i n j e c t e d  at 145.35 s 

Side  1 Update Rates: Fcvx=lO Hz, Fcvb=lO Hz, Fgnx=lO Hz, Fgnb=lO Hz 

Side  2 Update Rates: Fcvx= 4 Hz, Fcvb=lO Hz, Fgnx= 2 Hz, Fgnb= 4 Hz 

FAILURE LEVEL SENSOR FAILURE DETECTION 
TYPE DETECTED AT [a] TIME TRUE ESTIM. UNITS .................................................................. 

ROTATIONAL KINEMATICS SIDE 

Gyro-Rol 1 145.70 s (10) 0.35 s 

Gyro-iitch 145.80 s (10) 0.45 s 

Gyro-Yaw 146.60 s (10) 1.25 s 

IMU-Roll 145.35 s (1) 0.0 s 

IMU-Pitch 145.35 s (1) 0.0 s 

IMU-Yaw 145.35 s (1) 0.0 s 

0.90 0.798 deg/s 

1.00 0.939 deg/s 

1.00 2.111 deg/s 

1.50 1.598 deg 

2.00 1.656 deg 

4.00 4.099 deg 

TRANSLATIONAL DYNAMICS SIDE 

Acc.-Long. 150.10 s (10) 4.75 s 1.47 8.558 m/s/s 

A c c  . -Lat . 151.05 s (10) 5.70 s 1.28 11.974 m/s/s 

Acc.-Vert. 149.70 s (10) 4.35 s 1.47 13.987 m/s/s 

MLS-Azim. 145.35 s (1) 0.0 s 0.18 0.164 deg 

MLS-Elev. 145.35 s (1) 0.0 s 0.18 0.184 deg 

MLS -Range 145.35 s (1) 0.0 s 40.00 41.850 m 

IAS n.d. - - - - - 9.00 - - - m/ s - - - - - - -  
.................................................................. 

[a] Numbers i n  parentheses  i n d i c a t e  t h e  length of t h e  moving window 
for  t h e  de t ec to r  which detected t h e  f a i l u r e .  



Table 3 . 7 ~ :  FDI performance for sample parallel implementation with 
multi-rate updates: f a i l u r e s  i n j e c t e d  at 238.65 s 

S i d e  1 update Rates: Fcvx=lO Hz, Fcvb=lO Hz, Pgnx=lO Hz, Fgnb=lO Hz 

Side  2 update Rates: Pcvx= 4 Hz, Fcvb=lO Hz, Fgnx= 2 Hz, Fgnb= 4 Hz 

ROTATIONAL KINEMATICS SIDE 

Gyro-Roll 239.00 s (10) 0.35 s 0.90 0.715 deg/s 

Gyro-Pitch 239.05 s ( 5 )  0.40 s 1.00 1.964 deg/s  

Gyr o-Yaw 239.95 s (10) 1.30 s 1.00 2.255 deg/s 

IMU-Rol l  238.65 s (1) 0.0 s 1.50 1.479 deg 

IMU-Pi t ch 238.65 s (1) 0.0 s 2.00 2.108 deg 

IMU-Yaw 238.65 s (1) 0.0 s 4.00 4.085 deg 

TRANSLATIONAL DYNAMICS SIDE 

Acc.-Long. 243.70 s (10) 5.05 s 1.47 7.631 m/s/s 

A c c  .-Lat. 242.00 s (10) [bl  3.35 s 1.28 20.422 m/s/s 

A c c . - V e r t .  240.95 s (10) 2.30 s 1.47 16.964 m/s/s 

MLS-Azim. 238.65 S (1) 0.0 s 0.18 0.184 deg 

MLS-Elev. 238.65 s (1) 0.0 s 0.18 0.179 deg 

MLS-Range 238.65 s (1) 0.0 s 40.00 40.891 m 

IAS 239.90 s (10) 1.25 s 9.00 9.779 m / s  

[a] Numbers i n  parentheses indicate t h e  length of t h e  moving window 
f o r  t h e  de tec tor  which detected t h e  f a i l u r e .  

[b] Detector of window=lO detected a f a i l u r e  a t  241.50 s which 
was f a l s e l y  i so l a t ed  as an IAS f a i l u r e  of magnitude 3.455 m / s .  
(Correct isolation of t h e  in jec ted  f a i l u r e  occured a t  242.00 s). 
The f a l s e  alarm was healed a t  245 .00  s. 



i s  not detected here just as i n  the 4 Hz case because of the low failure level 

injected,  nonlinear errors associated w i t h  the multi-rate updates, and the 

dynamic w i n d  model. 

Finally, Table 3 . 7 ~  shows the results with sensor failures injected a t  

238.65 s, i n  the f ina l  runway approach segment of the f l i g h t  emulation. 

Comparing w i t h  the 20 Hz update rate results of Table 3.2c, we see that except 

for the accelerometer failures, there i s  no degradation i n  FDI performance i n  

the other sensors. The accelerometer fa i lure  detection times, however, 

continue to  be a few samples lower than i n  the 4 Hz run of Table 3 . 3 ~ .  

Summarizing, i n  th i s  chapter we have presented the implementation and 

performance of a partitioned version of FINDS on the target f l i g h t  computer to 

take advantage of i t s  dual-processor configuration. The NET estimation per- 

formance i s  identical to  the composite FINDS algorithm, the FDI performance i s  

s l igh t ly  better,  and the execution time for the nominal 20 Hz run i s  reduced 

by a factor of three over the composite version using one processor. We have 

a l so  presented implementations using multiple frequency updates for the gains 

and covariances of the bias-free and bias portions of the NFF and the effect  

of various combinations on execution speed. Finally, we have taken a sample 

multi-rate parallel implementation which yields a total execution time lower 

than t h e  simulated f l i g h t  time on the target f l i g h t  computer. The FDI 

performance of t h i s  implementation i s  shown to be much be t t e r  than t h e  

performance for the single gain update frequency of 4 Hz. 

8 
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IV. CONCLUSIONS AND RECOMMENDATIONS. 

In t h i s  report, we have presented the modifications made t o  the FINDS 

algorithm i n  order to  match i t s  isolation test wi th  the new detection strategy 

reported i n  [l], to  facil i tate testing with different f l i g h t  data sequences, 

to  port the software onto a dual-processor configured target f l i g h t  computer, 

and to increase i t s  execution speed to  allow real-time operation on the t e s t -  

bed target computer. 

The isolation algorithm has been modified t o  conform w i t h  the test-of- 

mean detection strategy described i n  the previous report [ l ] .  Since the 

detectors are able to detect NFP i n p u t  sensor failures quicker, the isolat ion 

strategy has to  cope wi th  reduced amounts of incremental information for 

performing a successful isolation a t  the time of detection. The isolat ion 

logic which s t i l l  consists of the bank of f i r s t  order Kalman f i l t e rs  has been 

modified to  account for the length of the detector window flagging the f a i l -  

ure. Results of this new isolation test w i t h  the same three series of failure 

injected f l i g h t s  have been presented, and indicate acceptable performance i n  

isolating the faulty sensor and estimating i t s  failure level. 

An auto-init ialization routine has been incorporated into the FINDS 

algorithm so that  the NFP estimates can be appropriately init ialized for 

different f l i g h t  test sequences--this routine uses the f i r s t  iteration of the 

f l i g h t  data to generate the NFF initial state conditions. 

For the dual-processor configured target f l i g h t  computer chosen a s  the 

candidate test-bed computer, we have partitioned the composite FINDS algorithm 

into two parts: one processing the sensors related to  the rotational kinema- 

t i c s  and the other processing the  sensors related to  translational dynamics. 

These sub-algorithms have been successfully ported onto the two sides of the 

target  f l i g h t  computer. With the use of a DMA data l i n k  to transfer relevant 
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program variables between the two sides, the parallel execution of t h e  par t i -  

tioned algorithm has been demonstrated. By partitioning the FINDS algorithm, 

i t s  execution speed has increased from about 11 times slower than real-time to 

3.5 times slower than real-time for the nominal 20 Hz update run. 

Necessary software changes have been incorporated i n  the FINDS algorithm 

to  real ize  a multi-rate implementation, i.e., to perform the bias-free and 

bias f i l t e r  gain and covariance computations a t  different  frequencies and thus 

to obtain an ideal compromise between real-time execution speed and good 

estimation and FDI performance. The results w i t h  a sample choice of update 

frequencies on both sides of the parallel implementation have been presented. 

This multi-rate implementation yields better than real-time end-to-end execu- 

tion speed w i t h  an acceptable FDI performance for a l l  sensor failures except 

for accelerometers. 

Based on the results obtained, we recommend the following: 

1) A n  end-to-end real-time execution capability of the partitioned F I N D S  

algorithm has been demonstrated on the target f l i g h t  computer wi th  the 

use of multi-frequency updates. We now recowend performing run-time 

analysis t o  obtain individual cycle timing diagrams a t  the various 

frequencies. In particular, real-time rate tree structures need to be 

developed to facilitate a time-phased implementation of the multi-rate 

updates and thus to ensure real-time execution for each cycle. 

2)  We recommend the evaluation of the partitioned multi-rate FINDS algo- 

rithm with the use of the nonlinear s ix  degree-of -f reedom NASA ATOPS 

B-737 simulation i n  an MLS environment. In  view of the limited avail- 

a b i l i t y  of actual f l i g h t  recorded sensor data, th i s  would f a c i l i t a t e  

the testing of the current FINDS algorithm w i t h  different f l i g h t  paths 

and atmospheric conditions such as discrete gusts and shears. Since 

the "true" aircraft states would be available from the simulation, we 



can test the FINDS NFF for estimation accuracy and address the issue 

of using these estimates i n  the aircraft f l i g h t  control system. 

3) Instead of the current target f l i g h t  computer, we recomnend the use of 

one of the various commercially available faster computers as a test- 

bed for f l i g h t  t e s t  experiments. This would allow the use of the 

nominal 20 Hz frequency i n  a l l  execution runs and thus obviate the 

small degradation i n  estimation and FDI performance which i s  inherent 

to the multi-rate update implementation. 

4 )  The current isolation strategy wi th  i t s  bank of f i r s t  order estimators 

u t i l i zes  more cycle time than a real-time implementation would allow. 

Further study of the isolation routine i s  needed i n  order to develop a 

new and simpler isolation tes t  which would execute wi th in  the con- 

straints of individual cycle times. 

5) We recommend the sequence of f l i g h t  t es t  experiments detailed i n  

chapter 4 i n  [ l ]  to validate the performance of the current paral le l  

implementation. In  particular, these tests would constrain the isola- 

tion algorithm to dynamically related sensor groups, t h u s  minimizing 

the computational burden without making the FDI problem any easier. 
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